
 

 

 

 

 

 

 

Saint Martin’s University: CSC 510  

Deployment of a Jupyterhub Server 
By Alexander Benson, Matt Dunaway, and Taylor Johnson  

  



Page 2 of 12 
 

Table of Contents 

Introduction ................................................................................................................................................... 2 

Motivation and Original Contribution .......................................................................................................... 3 

Background and Literature Review .............................................................................................................. 3 

A Hybrid Approach of Compiler and Interpreter ...................................................................................... 3 

A Comparison of C, MATLAB, and Python as Teaching Languages in Engineering (Fangohr, 2004) .. 4 

Language Considerations in the First Year CS Curriculum (Blake, 2011) ............................................... 4 

Interactive Workflows for C++ with Jupyter (QuantStack, 2019) ............................................................ 5 

Integration of Dotty in Jupyter notebooks (Gehrig & Martres, n.d.) ........................................................ 6 

Proposal Design and Implementation ........................................................................................................... 7 

Proposal .................................................................................................................................................... 7 

Implementation ......................................................................................................................................... 7 

Amazon Web Services .......................................................................................................................... 7 

Home Server ......................................................................................................................................... 9 

Testing and Evaluation ............................................................................................................................... 10 

Summary ..................................................................................................................................................... 11 

References ................................................................................................................................................... 12 

 

Introduction 
 

When our team began on the midterm report, we researched a variety of programming topics in 

recent and current research. We talked through many interesting topics of research dealing with 

topics such as advances in SCADA technology, centralized industrial IT infrastructure, and 

hybrid approaches to compiling and interpreting programming languages. We also explored 

research covering features and programming techniques of programming languages such as C, 

C++, PERL, JavaScript, and Python. After performing our literature review for the midterm 

report and extensive discussion within our team, we decided to pursue a project that would 

advance our own understanding of programming languages and could also be used as a tool in 

computer science (CS) education for beginner CS students and teachers. This project’s goal was 

to successfully build a JupyterHub server that could interpret multiple programming languages 

on one platform. This would provide a learning tool so users would understand the differences 

between languages that are traditionally compiled versus interpreted. As we will explain in 

greater detail in this final report, the JupyterHub build was a success. The virtual server platform 

and the programming language kernels were integrated into one hub that our team was able to 

run multiple languages on. These languages were taken directly from code used in CSC 510 

lecture and homework to aid our understanding of current programming topics simultaneously, 

allowing us to view the topic in other languages in one notebook.   



Page 3 of 12 
 

Motivation and Original Contribution 
 

The parameters of our assignment asked for a review of at least ten conference or journal papers 

related to programming languages and write a summary describing the research in five of them. 

The team then needed to produce either a proposal for a project or a plan to review relevant 

research on the topic chosen as the subject of the report. After reviewing over a dozen journal 

papers related to current research in programming languages, we chose five that we thought were 

the most interesting and relevant for the curriculum of CSC 510. This research revolved around 

the education and understanding of taught programming languages in a beginner curriculum. 

More specifically, each of us had some portion of our research dealing with the compilation and 

interpretation of programming languages. After much discussion on the complexities of the 

subject, we decided on a project that could assist students in their pursuit of further 

understanding the differences between compiled and interpretive languages. The motivation of 

our final project came from the research of our team member, Alexander Benson. He performed 

research on programming language education in a collegiate environment as well as the 

implementation of the JupyterHub server as an education tool. His documentation came from the 

Jupyter website, https://tljh.jupyter.org. 
 

Background and Literature Review 

  
A Hybrid Approach of Compiler and Interpreter 

Today, most programs are written in a high-level language and then translated to machine code 

by a compiler or an interpreter. The push for interpreted languages is in demand due to their 

simplicity but has increased CPU requirements for execution (Singh, 2012). The interpreted code 

is also larger than needed for execution, and there is no way to minimize code. To explain further 

concepts, a description of what an interpreter and compiler do is helpful. Compilers translate 

high-level language in phases. Lexical analysis forms tokens from the program text. Syntax 

analysis takes the tokens and organizes them into syntax trees. Type checking determines if the 

tokens of the syntax tree are consistent and if errors are present. Intermediate code generation 

translates the checked code into a symbolic machine code. Machine code generation turns the 

symbolic code into a machine code assembly language. Assembly code is finally turned into 

binary code. The interpreter performs some of the same phases, including lexical analysis, 

parsing, and type checking, but executions and expressions are performed directly on the syntax 

tree. The interpreter must return to the syntax tree multiple times for specific data and, thus, is 

executed slower than a compiler. Conversely, the interpreter is easier to write and has greater 

compatibility with different machines.  

 

The proposed hybrid approach starts with the compilation process to produce the intermediate 

code. The intermediate code is then interpreted rather than compiled. One of the most compelling 

examples of this was using Google Closure Compiler, which compiles from JavaScript to parse, 

type check, and edit code back to a minimized Java format (Singh, 2012). After this ran, an 

interpreter performed at a similar speed to a compiler. A proposal was then put forth to package 

the closure compiler method and a simplified interpreter to make a compreter. This would share 

https://tljh.jupyter.org/en/latest/install/amazon.html


Page 4 of 12 
 

the benefits of both translation methods of speed simplicity and portability into one translation 

apparatus. 

 

A Comparison of C, MATLAB, and Python as Teaching Languages in Engineering 

(Fangohr, 2004)  

The use of computing languages in engineering is typically for solving a problem. In this 

context, algorithms and pseudocode implementations are common. The paper explores an 

implementation of the composite trapezoidal rule (a numerical integration algorithm). The article 

discusses the languages used in an anecdotal tone. Experimentation was performed with different 

classes; however, the data collected was qualitative, and no quantitative information was 

collected. The writers relate their experience teaching the languages, common frustrations 

experienced, and syntactic structures in the different languages that enable learning or frustrate 

beginners.  

 

Some of the common problems with C cited make for plausible pitfalls while others sound 

preventable and unrelated to C in particular: Indentations and scopes do not agree; missing 

semicolons and curly braces; and the passing of the wrong type to function calls/printing with the 

incorrect format identifier. This last point makes more sense as a struggling point when the 

authors highlight that passing the wrong type in C will not necessarily result in an error being 

thrown. However, it can affect the numerical results. Given the complicated nature of some 

algorithmic implementations in numerical analysis (such as Runge-Kutta methods), it is 

reasonable that students might struggle with the permissive nature of C and the lack of visibility 

into variable values. 

 

The authors state that MATLAB typically presents less of a challenge for their students given 

that its error detection provides high-quality feedback, and its typing can be more intuitive. The 

authors do highlight that MATLAB is best managed using smaller global functions. However, 

these functions must be implemented in individual files (one per function) and stored in the same 

directory as the main program. For this reason, function management can be difficult for many 

new students. Related to this is that the function name, when called, is determined by the file 

name. Students can name the function something other than the file name and struggle to find the 

source of their error when running the main function. 
The authors note programming similarities in Python to MATLAB that lend it some of the 

advantages of the latter. Although there is some significance placed on the lack of curly braces 

(this appears to have been a central sticking point for some), the authors highlight that the visual 

clarity of controlling the function strictly through indentation is preferable to their students. 

Function definitions in Python are intuitively implemented, and typing has been found to be 

more intuitive. 
The authors conclude that Python is the preferred language for training and teaching engineers 

for reasons related to the intuitive nature of programming, the economics of a free language vs. 

the paid MATLAB license, and Python’s OS-agnostic implementation.  

 

Language Considerations in the First Year CS Curriculum (Blake, 2011) 

The author outlines the history of programming language selection in the field of computer 

science. There are many familiar points made by the author, reminiscent of similar debates in 

most forms of education. At the crux of the matter is the degree to which computer science 



Page 5 of 12 
 

should teach students to program without teaching students to become programmers, a job 

function that the authors consider philosophically separate from computer science. In outlining 

the history of computer science education, the author hints that their colleagues may have unduly 

caved to industry pressure to teach the latest language of the day. In teaching a particular 

language, students potentially become wedded to a strict syntax or programming paradigm, 

failing to understand or appreciate the broader purpose behind a language or paradigm.  
The author states that they began with Ruby and appreciated that scripting languages demand 

fewer complicated topics before writing code. However, the author criticizes the body of work 

outlining the use of Ruby, stating that there is an extensive body of literature related to 

programming in Ruby, but they focus on the writing process and do not dwell on the 

programming concepts needed for an introductory computer science course. Java was attempted 

as an alternative. However, students found Java to be unintuitive and difficult to transition to; 

Ruby was easier to learn and retain.  
 

Groovy was attempted as a bridge to Java, given its ability to interact with Java while providing 

a more intuitive syntax and structure. There were some problems with Groovy identified: Java 

and Groovy have different typing methods, different syntax, the number of control structures in 

Groovy is so large as to be detrimental, and Groovy does not respect private access modifiers.  
For the reasons outlined above, Scala is the preferred language for educating first-year computer 

science. The language is considered sufficiently like Java to provide familiarity with the 

language, and Scala supports interoperation with Java. Scala’s interactive shell and scripting 

capabilities were found to be helpful educational tools, and at the end of the semester, students 

experienced a reduction in the difficulty of transitioning to Java. 

 

Interactive Workflows for C++ with Jupyter (QuantStack, 2019) 

In the view of the authors, interactive computing/interactive programming is essential in 

productive programming. C++ lacks a strong history of interactive computing, making C++ 

challenging to teach. “The goal of Project Jupyter is designed to provide a consistent set of tools 

for scientific computing and data science workflows” (QuantStack, 2019). As such, Jupyter 

Project derived tools emphasize interactivity and data visualization. The Jupyter stack is built 

upon the kernel. Given the range of kernels and the breadth of available languages, the Jupyter 

Stack could be cautiously referred to as language-agnostic. Most of the languages rely on a C 

API embedding into an application. To simplify the kernel building process, the authors wrote 

the Xeus implementation.  

Xeus is an implementation of the Jupyter kernel built using C++. It is a library simplifying the 

creation of kernels, not a kernel. Xeus-Cling is a C++ kernel already in use at CERN and, 

through JupyterHub implementations, used to instruct students at Paris-Sud University. Since 

this is a Jupyter product, several tools, such as dynamically edited plots, tensors, and widgets, 

exceed the scope of this paper. All the same, specific libraries the authors point to libraries in the 

xtensor ecosystem that could be of use to C++ programmers. Of particular interest is the xtensor-

blas library, providing linear algebra functions to C++. The inclusion of linear algebra libraries 

within C++ nicely unites the speed of C++ with the increasing significance of matrix algebra 

within computing. 

 

https://github.com/xtensor-stack/xtensor-blas
https://github.com/xtensor-stack/xtensor-blas


Page 6 of 12 
 

Integration of Dotty in Jupyter notebooks (Gehrig & Martres, n.d.) 

According to the author, Dotty is the experimental form of Scala 3.0. Given work by other 

authors (Blake, 2011), Scala might be an ideal language for first-year computer science students. 

Integration with the Jupyter Notebook environment represents an opportunity to unify an 

educational programming language with an interactive workspace. The author states that it is 

now possible to make Jupyter kernels capable of supporting notebooks in any language. This 

paper outlines the work performed to create a Jupyter kernel of Dotty.  

 
Figure 1: Some of the libraries utilized and their arrangement (Gehrig & Martres, n.d.) 

Early complications the author encountered were a lack of clear protocols for 

multithreading/parallelism in Jupyter. While users are not permitted to run cells concurrently, 

this limitation extends to the IPython kernel, which is the foundation of the Jupyter environment. 

While distinct, this is related to the difficulties of remotely interpreting code. Initially 

implemented, the author found that the remote call to the interpreter was sending code then 

waiting for a returned value and printing it. This solution was deemed sub-optimal given that it 

limited any debugging functionality. The answer was to increase communication between the 

server and the client. The server immediately reports if it has initialized the thread and outputs a 

boolean value stating whether the thread was still executing code. The appeal of this solution lies 

in the increased integration of server-client performance, enabling improvements such as 

interrupting and a user interface that tracks the program status more reliably. 

 

 
Figure 2: Communication Protocols within the Dotty/Jupyter Implementation 

 

 



Page 7 of 12 
 

Proposal Design and Implementation 
 

Proposal 

The team proposed establishing a JupyterHub Server (The Littlest JupyterHub — The Littlest 

JupyterHub v0.1 Documentation, n.d.) capable of providing interpreted implementations of many 

programming languages. The purpose was to highlight the difference in interpreted vs. compiled 

languages. There were several anticipated outcomes: students interacting with the notebook will 

have a firmer grasp of the distinctions implied by the terms “compiled” vs. “interpreted,” 

students will have an opportunity to interact with traditionally compiled codes using an 

interpreted environment, the environment will allow students to switch between languages with 

minimal friction. There were known limitations to the project as planned: the Jupyter 

environment would not provide an opportunity to compile code in any convenient or 

straightforward way; cross-language communication would be limited; the number of 

JupyterHub users would be small; the languages supported would primarily be C++, Scala or 

Dotty, Java, potentially SQL, and C# if kernel implementations could be found. Jupyter can 

support many more languages than those outlined here, however many of these languages are 

supported by default, such as Python, or R. Python and R are also implemented as interpreted 

languages exclusively, meaning that the educational barrier for either may not be as high as C++. 

Implementation 

Amazon Web Services 

A prototype server was built on an Amazon Web Services (AWS) free-tier instance. The steps 

taken were to launch an EC2 instance using an Ubuntu 18.04 image, selecting minimal 

performance specifications (single-core CPU, 1GB ram, 30GB storage). The instance is 

classified as a t2.micro by AWS. The user data of the server was modified to initialize the server 

with a JupyterHub install. The code below is the user data used: 

 

#!/bin/bash 

curl -L https://tljh.jupyter.org/bootstrap.py \ 

  | sudo python3 - \ 

    --admin abenson mdunaway --plugin git+https://github.com/kafonek/tljh-shared-directory --

showprogress-page 
 

Unfortunately, the “--showprogress-page” keyword argument failed to enable the desired 

progress page. It is suspected that this feature is no longer included in JupyterHub or may be 

enabled without accepting a keyword. The shared directory, “~/scratch”, has been implemented. 

Future implementations will try to use a more indicative name for the shared folder. 

Rules were set to enable the use of SSH, HTTP, and HTTPS protocols on ports 22, 80, and 443, 

respectively. This was achieved by creating a security group with the necessary settings. After 

this, the instance was launched. The team had to wait while JupyterHub was installed on the 

server. This took several minutes.  



Page 8 of 12 
 

Once installed, passwords were selected, and the team logged in. At its base state, the 

JupyterHub instance only had a Python kernel installed. Kernels were added from this point. 

However, the process highlights a gap in the Jupyter Notebook documentation from an 

administrative perspective.  

Ideally, the process for adding a kernel to JupyterHub should be:  

1. Create a virtual environment for the kernel. 

2. Activate the virtual kernel. 

3. Install the kernel as specified, typically using the command: “sudo -E conda install 

<kernel>”. “sudo -E” commands JupyterHub to install the kernel globally, aka for all 

users. 

4. Deactivate the environment. 

5. Create a reference to the kernel within kernelspec, found using the command “jupyter 

kernelspec list”. 

It is unreasonable to expect users to navigate virtual environments and activate them on their 

own. Even if users are trained to search for available virtual environments, activating them 

represents an unnecessary burden on the user. Unfortunately, the JupyterHub documentation 

does not clearly outline a workaround enabling the critical step 5 shown above. As such, all 

kernels have been installed in the base environment, which is probably responsible for some of 

the unstable behavior which will be mentioned later. 

C++ is the most popular language covered by CSC 510. As such, adding a C++ kernel took 

priority. Xeus-Cling is a C++ kernel implemented for the Jupyter Notebook environment. As 

such, it behaves akin to an interpreted C++ environment. Xeus-Cling is installed via the 

command “sudo -E mamba install xeus-cling -c conda-forge”. The use of the “mamba” command 

is essential; for reasons that are not obvious, the conda-forge library does not install Xeus-Cling 

reliably. Xeus-Cling is easily installed if the correct command is used and performs well once the 

eccentricities of an interpreted C++ language are understood.  

From this point, other kernels were installed, such as Java and JavaScript, however only the Java 

kernel has been tested on Java code to date. Similar to C++, Java is treated as a strictly 

interpreted language by Jupyter, and accommodations must be made.  

The AWS server’s IP address and HTTPS certificates were directed to this website managed by a 

team member: hub.pluralbenson.me. As discussed below, an old workstation has been used to 

replace the AWS server. The URL now points to that server and, after a few hours of downtime, 

HTTPS has been enabled, see Figure 3.  

http://hub.pluralbenson.me/


Page 9 of 12 
 

 

Figure 3: The Google Domains Configuration of the Server and Domains 

Home Server 

The team could not count on a static IP for the purpose of hosting a web server. For this reason, 

dynamic DNS and Certbot were required. Dynamic DNS is a service enabling a server on a non-

static IP to periodically update its IP with the Domain Name Server. Certbot periodically updates 

the certificates enabling HTTPS. The local SSH, HTTP, and HTTPS ports had to be forwarded 

through the router. Once this was done, JupyterHub migrated from a 1GB RAM, 30GB Storage 

AWS server with a single core CPU server to an 8GB RAM, 200GB Storage, quad-core server.  

  



Page 10 of 12 
 

Testing and Evaluation 
 

Testing took two forms: testing user accounts and testing the kernel functionality. User account 

testing was relatively straightforward; an account with the username “test” was created, and any 

changes to the server were checked against the test user to verify that the desired effect had taken 

place. Kernel functionality was more difficult to test. 

 

For a kernel to be deemed successful, it needed to meet the necessary syntax and grammatical 

behaviors of the language with a minimal number of adjustments. As mentioned above, 

interpreted C++ is not a perfect replica of its compiled equivalent. For example, code snippets:  

#include <iostream> 
using namespace std; 
 

and  

int main() 

{ 
} 

must be stated in separate cells. The main function also does not run by default because 

interpreted languages allow for single-line commands and C++ respects this convention. As 

such, defining the function “main()” is identical to defining any other function. If the user wishes 

to run main, they must call it below the function like so: 

int main() 

{ 
} 

main() 

The C++ kernel must be the C++ 14 kernel. There is no obvious reason why this is so or why the 

Xeus-Cling designers would ship C++ 11 and C++ 17 kernels that are strictly for the Jupyter 

backend. It was originally thought that the kernel required regular reinstallation; “cout” 

commands have thrown errors that are not seen when the same code is run on a traditional 

compiler. These errors were once fixed by reinstalling Xeus-Cling. The issue was due to 

compiling errors: if, for any reason, the interpreter encountered an error at execution, the kernel 

required a restart. Failing to restart the kernel would result in the “cout” behaviors originally 

thought to be a complication with the installed kernel. Restarting the kernel clears all 

environment variables from the notebook, so the user must remember to run any cells that import 

important libraries and namespaces. 

 

 



Page 11 of 12 
 

Java’s behavior deviates in a very similar manner. Defining a class is not the primary means of 

controlling flow. Instead, the interpreter favors an approach that could be described as “Python-

flavored Java.” The Java kernel appears to be more stable than the C++ kernel. No restarts have 

been necessary to fix unexpected behavior.  

Summary 
 

In conclusion, our final project goal of setting up a JupyterHub Server in the AWS virtual server 

and setting up an interpreted implementation of multiple languages was successful. There were a 

few complications in the installation of language kernels and a learning curve for the interpreted 

version of each language. Languages with histories as strictly compiled, such as C++, deviated 

more from their compiled formats and involved more adjustment than hybrid languages. Overall, 

JupyterHub was stable enough that multiple languages could be used in the base environment. 

Improvements to JupyterHub in the future should include clearer support for multiple virtual 

environments. As such, it could evolve into a learning tool allowing users to understand the 

differences between traditionally compiled and interpreted languages. We believe this tool, with 

refinements and improvements, could serve as an educational tool for compiling multiple 

languages in an environment where parallel comparisons can be made locally. Support for 

multiple kernels within the same notebook could allow for easy comparisons within the same 

book1. Furthermore, our results supply a platform to test the premise of our literature review, 

suggesting interactive computing and programming is essential in productive programming. 

Future research could then be focused on a quantitative assessment of learning objectives using 

the JupyterHub environment. 

  

 
1 This is already possible, but the user must manually change the kernel any time they wish to use a different 
language. 



Page 12 of 12 
 

References 
 

Blake, J. D. (2011). Language considerations in the first-year CS curriculum. 
Fangohr, H. (2004). A Comparison of C, MATLAB, and Python as Teaching Languages in Engineering. 

In M. Bubak, G. D. van Albada, P. M. A. Sloot, & J. Dongarra (Eds.), Computational Science—ICCS 

2004 (Vol. 3039, pp. 1210–1217). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-25944-

2_157 
Gehrig, R., & Martres, G. (n.d.). Integration of Dotty in Jupyter notebooks. 10. 
Installing on Amazon Web Services—The Littlest JupyterHub v0.1 documentation. (n.d.). Retrieved 

October 12, 2021, from https://tljh.jupyter.org/en/latest/install/amazon.html 
QuantStack. (2019, December 25). Interactive Workflows for C++ with Jupyter. Medium. 

https://blog.jupyter.org/interactive-workflows-for-c-with-jupyter-fe9b54227d92 
Singh, S. K. (2012). Performance Evaluation of Hybrid Reconfigurable Computing Architecture over 

Symmetrical FPGA. International Journal of Embedded Systems and Applications, 2(3), 107–116. 

https://doi.org/10.5121/ijesa.2012.2312 
Stroustrup, B. (2020). Thriving in a crowded and changing world: C++ 2006&#x2013;2020. Proceedings 

of the ACM on Programming Languages, 4(HOPL), 70:1-70:168. https://doi.org/10.1145/3386320 
The Littlest JupyterHub—The Littlest JupyterHub v0.1 documentation. (n.d.). Retrieved October 12, 

2021, from https://tljh.jupyter.org/en/latest/ 

 

https://doi.org/10.1007/978-3-540-25944-2_157
https://doi.org/10.1007/978-3-540-25944-2_157
https://tljh.jupyter.org/en/latest/install/amazon.html
https://blog.jupyter.org/interactive-workflows-for-c-with-jupyter-fe9b54227d92
https://doi.org/10.5121/ijesa.2012.2312
https://doi.org/10.1145/3386320
https://tljh.jupyter.org/en/latest/

